3.266 \(\int \frac {(d+e x)^3 (d^2-e^2 x^2)^p}{x^3} \, dx\)

Optimal. Leaf size=166 \[ -\frac {e^2 (3-p) \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;1-\frac {e^2 x^2}{d^2}\right )}{2 d (p+1)}-\frac {3 e \left (d^2-e^2 x^2\right )^{p+1}}{x}-\frac {d \left (d^2-e^2 x^2\right )^{p+1}}{2 x^2}-2 e^3 (3 p+1) x \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1}{2},-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right ) \]

[Out]

-1/2*d*(-e^2*x^2+d^2)^(1+p)/x^2-3*e*(-e^2*x^2+d^2)^(1+p)/x-2*e^3*(1+3*p)*x*(-e^2*x^2+d^2)^p*hypergeom([1/2, -p
],[3/2],e^2*x^2/d^2)/((1-e^2*x^2/d^2)^p)-1/2*e^2*(3-p)*(-e^2*x^2+d^2)^(1+p)*hypergeom([1, 1+p],[2+p],1-e^2*x^2
/d^2)/d/(1+p)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1807, 764, 266, 65, 246, 245} \[ -2 e^3 (3 p+1) x \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1}{2},-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right )-\frac {e^2 (3-p) \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;1-\frac {e^2 x^2}{d^2}\right )}{2 d (p+1)}-\frac {3 e \left (d^2-e^2 x^2\right )^{p+1}}{x}-\frac {d \left (d^2-e^2 x^2\right )^{p+1}}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^3*(d^2 - e^2*x^2)^p)/x^3,x]

[Out]

-(d*(d^2 - e^2*x^2)^(1 + p))/(2*x^2) - (3*e*(d^2 - e^2*x^2)^(1 + p))/x - (2*e^3*(1 + 3*p)*x*(d^2 - e^2*x^2)^p*
Hypergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p - (e^2*(3 - p)*(d^2 - e^2*x^2)^(1 + p)*H
ypergeometric2F1[1, 1 + p, 2 + p, 1 - (e^2*x^2)/d^2])/(2*d*(1 + p))

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^Fr
acPart[p], Int[(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 764

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[f, Int[x^m*(a + c*x^2)^p, x]
, x] + Dist[g, Int[x^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, f, g, p}, x] && IntegerQ[m] &&  !IntegerQ[2
*p]

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps

\begin {align*} \int \frac {(d+e x)^3 \left (d^2-e^2 x^2\right )^p}{x^3} \, dx &=-\frac {d \left (d^2-e^2 x^2\right )^{1+p}}{2 x^2}-\frac {\int \frac {\left (d^2-e^2 x^2\right )^p \left (-6 d^4 e-2 d^3 e^2 (3-p) x-2 d^2 e^3 x^2\right )}{x^2} \, dx}{2 d^2}\\ &=-\frac {d \left (d^2-e^2 x^2\right )^{1+p}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{1+p}}{x}+\frac {\int \frac {\left (2 d^5 e^2 (3-p)-4 d^4 e^3 (1+3 p) x\right ) \left (d^2-e^2 x^2\right )^p}{x} \, dx}{2 d^4}\\ &=-\frac {d \left (d^2-e^2 x^2\right )^{1+p}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{1+p}}{x}+\left (d e^2 (3-p)\right ) \int \frac {\left (d^2-e^2 x^2\right )^p}{x} \, dx-\left (2 e^3 (1+3 p)\right ) \int \left (d^2-e^2 x^2\right )^p \, dx\\ &=-\frac {d \left (d^2-e^2 x^2\right )^{1+p}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{1+p}}{x}+\frac {1}{2} \left (d e^2 (3-p)\right ) \operatorname {Subst}\left (\int \frac {\left (d^2-e^2 x\right )^p}{x} \, dx,x,x^2\right )-\left (2 e^3 (1+3 p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int \left (1-\frac {e^2 x^2}{d^2}\right )^p \, dx\\ &=-\frac {d \left (d^2-e^2 x^2\right )^{1+p}}{2 x^2}-\frac {3 e \left (d^2-e^2 x^2\right )^{1+p}}{x}-2 e^3 (1+3 p) x \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1}{2},-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right )-\frac {e^2 (3-p) \left (d^2-e^2 x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1-\frac {e^2 x^2}{d^2}\right )}{2 d (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 182, normalized size = 1.10 \[ \frac {e \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (e x \left (2 d e (p+1) x \, _2F_1\left (\frac {1}{2},-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right )-\left (d^2-e^2 x^2\right ) \left (1-\frac {e^2 x^2}{d^2}\right )^p \left (3 \, _2F_1\left (1,p+1;p+2;1-\frac {e^2 x^2}{d^2}\right )+\, _2F_1\left (2,p+1;p+2;1-\frac {e^2 x^2}{d^2}\right )\right )\right )-6 d^3 (p+1) \, _2F_1\left (-\frac {1}{2},-p;\frac {1}{2};\frac {e^2 x^2}{d^2}\right )\right )}{2 d (p+1) x} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^3*(d^2 - e^2*x^2)^p)/x^3,x]

[Out]

(e*(d^2 - e^2*x^2)^p*(-6*d^3*(1 + p)*Hypergeometric2F1[-1/2, -p, 1/2, (e^2*x^2)/d^2] + e*x*(2*d*e*(1 + p)*x*Hy
pergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2] - (d^2 - e^2*x^2)*(1 - (e^2*x^2)/d^2)^p*(3*Hypergeometric2F1[1, 1
 + p, 2 + p, 1 - (e^2*x^2)/d^2] + Hypergeometric2F1[2, 1 + p, 2 + p, 1 - (e^2*x^2)/d^2]))))/(2*d*(1 + p)*x*(1
- (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

fricas [F]  time = 0.91, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )} {\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^p/x^3,x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*(-e^2*x^2 + d^2)^p/x^3, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{3} {\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^p/x^3,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x^3, x)

________________________________________________________________________________________

maple [F]  time = 0.04, size = 0, normalized size = 0.00 \[ \int \frac {\left (e x +d \right )^{3} \left (-e^{2} x^{2}+d^{2}\right )^{p}}{x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(-e^2*x^2+d^2)^p/x^3,x)

[Out]

int((e*x+d)^3*(-e^2*x^2+d^2)^p/x^3,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )}^{3} {\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^p/x^3,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (d^2-e^2\,x^2\right )}^p\,{\left (d+e\,x\right )}^3}{x^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d^2 - e^2*x^2)^p*(d + e*x)^3)/x^3,x)

[Out]

int(((d^2 - e^2*x^2)^p*(d + e*x)^3)/x^3, x)

________________________________________________________________________________________

sympy [C]  time = 8.37, size = 177, normalized size = 1.07 \[ - \frac {d^{3} e^{2 p} x^{2 p} e^{i \pi p} \Gamma \left (1 - p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, 1 - p \\ 2 - p \end {matrix}\middle | {\frac {d^{2}}{e^{2} x^{2}}} \right )}}{2 x^{2} \Gamma \left (2 - p\right )} - \frac {3 d^{2} d^{2 p} e {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - p \\ \frac {1}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{x} - \frac {3 d e^{2} e^{2 p} x^{2 p} e^{i \pi p} \Gamma \left (- p\right ) {{}_{2}F_{1}\left (\begin {matrix} - p, - p \\ 1 - p \end {matrix}\middle | {\frac {d^{2}}{e^{2} x^{2}}} \right )}}{2 \Gamma \left (1 - p\right )} + d^{2 p} e^{3} x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, - p \\ \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(-e**2*x**2+d**2)**p/x**3,x)

[Out]

-d**3*e**(2*p)*x**(2*p)*exp(I*pi*p)*gamma(1 - p)*hyper((-p, 1 - p), (2 - p,), d**2/(e**2*x**2))/(2*x**2*gamma(
2 - p)) - 3*d**2*d**(2*p)*e*hyper((-1/2, -p), (1/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/x - 3*d*e**2*e**(2*p)*
x**(2*p)*exp(I*pi*p)*gamma(-p)*hyper((-p, -p), (1 - p,), d**2/(e**2*x**2))/(2*gamma(1 - p)) + d**(2*p)*e**3*x*
hyper((1/2, -p), (3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)

________________________________________________________________________________________